math/big.Int.Mul (method)
72 uses
math/big (current package)
int.go#L158: func (z *Int) Mul(x, y *Int) *Int {
int.go#L630: t.Mul(A, t)
int.go#L631: s.Mul(B, s)
int.go#L638: r.Mul(A, r)
int.go#L639: q.Mul(B, q)
int.go#L655: s.Mul(Ub, q)
int.go#L749: t.Mul(Ua, t)
int.go#L750: s.Mul(Ub, s)
int.go#L770: y.Mul(a, Ua) // y can safely alias a
int.go#L916: beta := new(Int).Mul(alpha, alpha)
int.go#L918: beta.Mul(beta, tx)
int.go#L921: beta.Mul(beta, x)
int.go#L923: beta.Mul(beta, alpha)
int.go#L960: t.Mul(&t, &t).Mod(&t, p)
int.go#L970: g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
int.go#L971: y.Mul(&y, &t).Mod(&y, p)
int.go#L972: b.Mul(&b, &g).Mod(&b, p)
rat.go#L526: z.a.Mul(&x.a, &y.a)
crypto/dsa
dsa.go#L247: s = new(big.Int).Mul(priv.X, r)
dsa.go#L250: s.Mul(s, kInv)
dsa.go#L298: u1 := new(big.Int).Mul(z, w)
dsa.go#L300: u2 := w.Mul(r, w)
dsa.go#L304: v.Mul(v, u2)
crypto/ecdsa
ecdsa.go#L269: s = new(big.Int).Mul(priv.D, r)
ecdsa.go#L271: s.Mul(s, kInv)
ecdsa.go#L316: u1 := e.Mul(e, w)
ecdsa.go#L318: u2 := w.Mul(r, w)
crypto/elliptic
elliptic.go#L72: x3 := new(big.Int).Mul(x, x)
elliptic.go#L73: x3.Mul(x3, x)
elliptic.go#L98: y2 := new(big.Int).Mul(y, y)
elliptic.go#L123: zinvsq := new(big.Int).Mul(zinv, zinv)
elliptic.go#L125: xOut = new(big.Int).Mul(x, zinvsq)
elliptic.go#L127: zinvsq.Mul(zinvsq, zinv)
elliptic.go#L128: yOut = new(big.Int).Mul(y, zinvsq)
elliptic.go#L163: z1z1 := new(big.Int).Mul(z1, z1)
elliptic.go#L165: z2z2 := new(big.Int).Mul(z2, z2)
elliptic.go#L168: u1 := new(big.Int).Mul(x1, z2z2)
elliptic.go#L170: u2 := new(big.Int).Mul(x2, z1z1)
elliptic.go#L178: i.Mul(i, i)
elliptic.go#L179: j := new(big.Int).Mul(h, i)
elliptic.go#L181: s1 := new(big.Int).Mul(y1, z2)
elliptic.go#L182: s1.Mul(s1, z2z2)
elliptic.go#L184: s2 := new(big.Int).Mul(y2, z1)
elliptic.go#L185: s2.Mul(s2, z1z1)
elliptic.go#L196: v := new(big.Int).Mul(u1, i)
elliptic.go#L199: x3.Mul(x3, x3)
elliptic.go#L207: y3.Mul(y3, v)
elliptic.go#L208: s1.Mul(s1, j)
elliptic.go#L214: z3.Mul(z3, z3)
elliptic.go#L217: z3.Mul(z3, h)
elliptic.go#L238: delta := new(big.Int).Mul(z, z)
elliptic.go#L240: gamma := new(big.Int).Mul(y, y)
elliptic.go#L247: alpha.Mul(alpha, alpha2)
elliptic.go#L252: beta := alpha2.Mul(x, gamma)
elliptic.go#L254: x3 := new(big.Int).Mul(alpha, alpha)
elliptic.go#L264: z3.Mul(z3, z3)
elliptic.go#L280: y3 := alpha.Mul(alpha, beta)
elliptic.go#L282: gamma.Mul(gamma, gamma)
crypto/rsa
rsa.go#L215: modulus.Mul(modulus, prime)
rsa.go#L228: de.Mul(de, priv.D)
rsa.go#L322: n.Mul(n, prime)
rsa.go#L324: totient.Mul(totient, pminus1)
rsa.go#L471: r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
rsa.go#L483: r.Mul(r, prime)
rsa.go#L526: cCopy.Mul(cCopy, rpowe)
rsa.go#L541: m.Mul(m, priv.Precomputed.Qinv)
rsa.go#L543: m.Mul(m, priv.Primes[1])
rsa.go#L550: m2.Mul(m2, values.Coeff)
rsa.go#L555: m2.Mul(m2, values.R)
rsa.go#L562: m.Mul(m, ir)
go/constant
value.go#L1129: return makeInt(newInt().Mul(big.NewInt(a), big.NewInt(b)))
value.go#L1161: c.Mul(a, b)