math/big.Int.Mul (method)

72 uses

	math/big (current package)
		int.go#L158: func (z *Int) Mul(x, y *Int) *Int {
		int.go#L630: 	t.Mul(A, t)
		int.go#L631: 	s.Mul(B, s)
		int.go#L638: 	r.Mul(A, r)
		int.go#L639: 	q.Mul(B, q)
		int.go#L655: 		s.Mul(Ub, q)
		int.go#L749: 				t.Mul(Ua, t)
		int.go#L750: 				s.Mul(Ub, s)
		int.go#L770: 		y.Mul(a, Ua) // y can safely alias a
		int.go#L916: 	beta := new(Int).Mul(alpha, alpha)
		int.go#L918: 	beta.Mul(beta, tx)
		int.go#L921: 	beta.Mul(beta, x)
		int.go#L923: 	beta.Mul(beta, alpha)
		int.go#L960: 			t.Mul(&t, &t).Mod(&t, p)
		int.go#L970: 		g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
		int.go#L971: 		y.Mul(&y, &t).Mod(&y, p)
		int.go#L972: 		b.Mul(&b, &g).Mod(&b, p)
		rat.go#L526: 	z.a.Mul(&x.a, &y.a)

	crypto/dsa
		dsa.go#L247: 		s = new(big.Int).Mul(priv.X, r)
		dsa.go#L250: 		s.Mul(s, kInv)
		dsa.go#L298: 	u1 := new(big.Int).Mul(z, w)
		dsa.go#L300: 	u2 := w.Mul(r, w)
		dsa.go#L304: 	v.Mul(v, u2)

	crypto/ecdsa
		ecdsa.go#L269: 		s = new(big.Int).Mul(priv.D, r)
		ecdsa.go#L271: 		s.Mul(s, kInv)
		ecdsa.go#L316: 	u1 := e.Mul(e, w)
		ecdsa.go#L318: 	u2 := w.Mul(r, w)

	crypto/elliptic
		elliptic.go#L72: 	x3 := new(big.Int).Mul(x, x)
		elliptic.go#L73: 	x3.Mul(x3, x)
		elliptic.go#L98: 	y2 := new(big.Int).Mul(y, y)
		elliptic.go#L123: 	zinvsq := new(big.Int).Mul(zinv, zinv)
		elliptic.go#L125: 	xOut = new(big.Int).Mul(x, zinvsq)
		elliptic.go#L127: 	zinvsq.Mul(zinvsq, zinv)
		elliptic.go#L128: 	yOut = new(big.Int).Mul(y, zinvsq)
		elliptic.go#L163: 	z1z1 := new(big.Int).Mul(z1, z1)
		elliptic.go#L165: 	z2z2 := new(big.Int).Mul(z2, z2)
		elliptic.go#L168: 	u1 := new(big.Int).Mul(x1, z2z2)
		elliptic.go#L170: 	u2 := new(big.Int).Mul(x2, z1z1)
		elliptic.go#L178: 	i.Mul(i, i)
		elliptic.go#L179: 	j := new(big.Int).Mul(h, i)
		elliptic.go#L181: 	s1 := new(big.Int).Mul(y1, z2)
		elliptic.go#L182: 	s1.Mul(s1, z2z2)
		elliptic.go#L184: 	s2 := new(big.Int).Mul(y2, z1)
		elliptic.go#L185: 	s2.Mul(s2, z1z1)
		elliptic.go#L196: 	v := new(big.Int).Mul(u1, i)
		elliptic.go#L199: 	x3.Mul(x3, x3)
		elliptic.go#L207: 	y3.Mul(y3, v)
		elliptic.go#L208: 	s1.Mul(s1, j)
		elliptic.go#L214: 	z3.Mul(z3, z3)
		elliptic.go#L217: 	z3.Mul(z3, h)
		elliptic.go#L238: 	delta := new(big.Int).Mul(z, z)
		elliptic.go#L240: 	gamma := new(big.Int).Mul(y, y)
		elliptic.go#L247: 	alpha.Mul(alpha, alpha2)
		elliptic.go#L252: 	beta := alpha2.Mul(x, gamma)
		elliptic.go#L254: 	x3 := new(big.Int).Mul(alpha, alpha)
		elliptic.go#L264: 	z3.Mul(z3, z3)
		elliptic.go#L280: 	y3 := alpha.Mul(alpha, beta)
		elliptic.go#L282: 	gamma.Mul(gamma, gamma)

	crypto/rsa
		rsa.go#L215: 		modulus.Mul(modulus, prime)
		rsa.go#L228: 	de.Mul(de, priv.D)
		rsa.go#L322: 			n.Mul(n, prime)
		rsa.go#L324: 			totient.Mul(totient, pminus1)
		rsa.go#L471: 	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
		rsa.go#L483: 		r.Mul(r, prime)
		rsa.go#L526: 		cCopy.Mul(cCopy, rpowe)
		rsa.go#L541: 		m.Mul(m, priv.Precomputed.Qinv)
		rsa.go#L543: 		m.Mul(m, priv.Primes[1])
		rsa.go#L550: 			m2.Mul(m2, values.Coeff)
		rsa.go#L555: 			m2.Mul(m2, values.R)
		rsa.go#L562: 		m.Mul(m, ir)

	go/constant
		value.go#L1129: 				return makeInt(newInt().Mul(big.NewInt(a), big.NewInt(b)))
		value.go#L1161: 			c.Mul(a, b)